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INVESTIGATION OF PARTIAL ASYMPTOTIC STABILITY AND INSTABILITY BASED ON 
THE LIMITING EQUATIONS* 

A.S. ANDREYEV 

A new type of limiting equations is studied, used to investigate the 

asymptotic stability and instability of unperturbed motion with respect 

to some of the variables, based on the Lyapunov function with a sing- 

constant derivative, without assuming that the perturbed motions are 

bounded over the non-controlled coordinates. Sufficient conditions are 

derived for the asymptotic stability with respect to the generalized 
velocities and some of the generalized coordinates of the zero position 

of equilibrium of the non-autonomous, holonomicandnon-holonomicmechanical 

systems under the action of dissipative forces. 

1. Let us consider the following system of equations: 

5' = x (t, z) (X (t, 0) = 0) (1.1) 

I E R"',,z = (y,z), y E R", z E RP (m = s + P) 

The function X(t, x): R+ X I?-+ R"(R+ = LO, +oo[, r={IIYIIcH>o, IIzll<+m), IIYII 
is a norm in R", (IzIJ in Rp,, llxll =llYll +ljzll) satisfies the conditions for the existence of 

solutions in the Caratheodory sense /l/. A locally integrable function r(t)6Z& exists, 

continuous in x for fixed t, measurable in t for fixed X, for every compact set Kc~ such 

that 11 X(t,s)l[<r(t). We shall also assume that system (1.1) satisfies the conditions of z- 

continuability of the solutions /2/. 
we will also introduce a shift of the function X(t,s) in t by an amount r> 0 according 

*Prikl.fifatem.Mekhan.,51,2,253z259,1987 
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to the formula Xi(t,x) = X(iT_tz,~)~ a shift in t and z by an amount 't> 0, and a vector 
qE RP according to the formula X,,(t,;2) = X(t +z,~,z f ?j). 

Definition 1. System (1.1) will be called @,z)-precompact, if for any sequences 2,--t+ 
00 and q,-tm there exist subsequences {T,I~} and ($,~}. and limiting functions CD,(t,z): I$+ x 
r-tRrn and @I(t,X): B* X r+Rm, such, that the following relations hold for any sequence 
of continuous functions U = Us (t): [a,b]-+lT, converging uniformly to the function u*(t): [a,b]-+ 
I?: 

5 aJz ft, UQ (f)> lit = 
a 

;F 3 X$@, EQt>pt 
“0 

xik’ (t, x) = x (t f ak, x), x$j (t, x) = x(f '-i-&ah., .!/F z -t= k) 

Moreover, we shall, call the systems of equations 

Cr. = CD, (t, 5), 5' = 0, (t, 5) (1.3) 

t- and (t,z)-limiting with respect to (1.1) respectively. 
The precompactibifity of (1.1) and a relation connecting the solutions of (1.1) and (l-31, 

will be established with help of the following lemmas obtained in the same manner as those in 
/3, 41. 

Lemma 1. The sufficient condition for system (1.1) to be precompact is, that the function 
X (G d satisfy the following conditions: for every set S = (IIY~I<H~<U, Ijzjl( +~0} there 
exist locally two functions Y = v(s, t)E I?J, and 9 = ti (s,t)~ L,, so that 

II X (f, x) II < v (S, t), (1.4) 
II X tt. ;22) - X (& SIllI < 6 (S, t) II x.2 - "1 II 

and 
Here the function v(sI t) is uniformly continuous in the mean in the interval [t, t-k 11, 

the function 6 (s,t) is bounded in the norm in the interval [t,t j-11, i.e. 

for any E>O and t>D of any set EC&~ 
some number N = N(S). Under these conditions 
also unique. 

f 11 with the measure m(E)< S(B)> 0 and for 
the solutions of systems (1.1) and (1.3) are 

Lemma 2, We shall assume that system (I 

sequences ~-,+-t-m and n,,+w the sequence 

X (t + "n, 9, 2 -t n,)- QD, (& s), and the sequence 

I) satisfies conditions (1.4), and for some 

x!") (t, 5) = x (t + T,, z)+ CD, (t, I) and X$ (t, Z) = 

;E, = bdr &I) + %O = k%., %)* Let ml (if: f0, a, I+ f 
solutions of the corresponding first and second and ‘p2 (t): IO, cc2 i -+ r (cp, (0) = rp,‘(O) = x0) be the 

system of (l-3), Then the sequence of solutions x =L x,,(t) of the system 2' = x (t + 2,, x), 
satisfying the initial conditions ‘%I (0) = x?z converge to r = VI(t) uniformly in every interval 
to, f&l C 10, a,t * The sequence of solutions xr =x,'(t) of the systems r' = X(t +~~?y,z +s) 
with initial conditions -2,' (0) = Lc* converges to x = m,(t) uniformly in [O, &I C to, UJ. 

Note. Let us consider separately the case when system (1.1) is autonomous 

z’ = x (z) 0.3 
The system will be z-precompact ii for any sequence ~,,-.+cQ there exists a subsequence 

(We c M and a function 4,(s): I'- Rm such, that X($,a+ ink)-- @(Y,z) uniformly on every compact 
~~~~~~~4~,~2~~Q}= The system z*=@(z) will be s-limiting with respect to (1.5). The 
necessary and sufficient condition for (1.5) to be z-precompact is that the function x (5) 
be bounded and uniformly continuous on every set S = { IjyIIdN1<H,IIzJI<+ m}. The sufficient 
condition for the solutions of the system (1.5) and the systems limiting with respect to it 
is, that the function X(z) satisfy the Gpshitz condition /f X(z,)-- X(~,)/~<L((i~s,-- r,llb 

It was suggested in /5, 6/ that the y-behaviour of the solutions of (1.1) canbedetermined 
by constructing the systems y' = Y(t,y) limiting with respect to it, for every continuous 
function z = z(t)-+ 00. Introducing the (t, z)-limiting systems enables us, as compared with 
/5, 6/, to take into account the s-properties of the solutions of (1.1). 

Let us denote by JV(t, 5): R+ X I’+R+ the function satisfying conditions of the form 

(1.41, which guarantee the precompactness of its shifts &V~~'(t,z) = W(t+ z,,1) and I%‘$’ (t,g, 

2) = w(t i- %, Y,z + rln) in the convergence (1.2). 



198 

Definition 2. The function 0 (t, 2) == (wl (t,r), 0% (t, 3')): Hf ?< r-+-R+ :< fi+ wiJ.1 be called 

(k z)-limiting with respect to w(t,x), if sequences z,--$-co and qRCRP, nn+ CO. exist such 

that the sequences of shifts w?'(t,s) = w(t+ r*. 2) and w$' (t, Y, 2) = w(t $_ %, Y, 2 + %) con- 

verge in the convergence (1.2) to o1 (t, r) and ~0~ (t, 2) respectively. 

Definition 3. The limiting functions @ = (@,,(o,) and w = (w,,O& form a limiting pair 
(a, o), provided that they are limiting for the same sequences 2,--t -k-m and la-+co. 

Definition 4. Let V: R+ x r-+-R+ be a Lyapunov function, and ~,--r-i- oi5 and qn-+m be 

some sequences. we will define the limiting sets N,(t,c) and N,(t,c) as the sets of points 

t such, that J- E N,(t, Cf, provided that a sequence zS,-i-r exists for which E'(t -I- r,, T,)-+ c 
as n-t +co,xE N,(t,c), if a sequence & = (Y,z,)-+x exists for which Ii (C $- Z,, Y,, z, $- lln)-+ c 
as n--+-+00. 

2. Let E R+ X r-tR+ be a Lyapunov function possessing, by virtue of (1.2): I,'(t,x)< 
-W (t, X) < 0, a derivative. Let (01,o) be a limiting pair and N(t, e) = N, (t, c) N, (t, c) a 
corresponding limiting set. We denote by Mi (i = 1.2) the set of solutions of the corresponding 

system (I. 3), belonging in its whole interval of definition to the set {Ni(t,c): c = c0 = const> 
0) f! {W (1, x) -L 01. U M1, and U M, are the unions of the sets M, and-&f% over all limiting 
pairs (@, 6)). We shall write M, + = (UM,), U (ilM&, where ( )V is the projection of the set 
on the hyperplane z = 0. 

Theorem 1. We shall assume that a function v(t,x),> 0 exists, with a derivative v'(1, 
z)< -W(t,s),<O. Then every solution of (1.1) r =r(t, to,%) bounded in y so that IJy(C,&, 
x0)//f HI (Hfor all t> tp, approaches MU+ in 9 without limit as t--+ i-co, i.e. Y(t,t,,~~)-+ 
UP+ as t-+ +m. 

Proof. Let I = x(t,t,,z,) be a solution of system (1.1) bounded in Y, II Y (6 GJ> r*) Ii < II, 
at all t > t,. 

The function T/(t) = V (t, I (t, to, co)) d ecreases monotonically and has a lower limit. This 
means that c,.> 0 exists such, that V(t)+e, as t-+ +a, or 

lim V (tn + t, I (t, -k t, t,, 4) = co (2.1) 
n4= 

for any sequence t,+ +a and any t> 0. 
Let Y,* be a y-limiting point of this solution /7/, i.e. there exists CC,,--+ foe such 

that Y (z,, t,, %) --t %*. Two cases are possible: the sequence z, = z(z,,,~~,.Q) is bounded, and 

%I = 2 (r,, to, %I) -+ M. 
In the first case we can assume that z,+z,*. This means that Z~ = a:(~,, to,r,,)+r,* = 

(?A*, zo*). Let Us assume that J&(t) = r (z, + t, to,%)* Repeatingthearguments used in Theorem 
2.1 of /8/ and taking into account (2.1), we can establish that a subsequence n,-++co 
exists for which ;eRe(t) will converge to the non-continuable solution x=91(t) Of some 
limiting system z' = @,* (t,s), such that qr(t)E N1* (t,c& 17 {OX* (kg)= 0). From this it follows 
that yoi E-(Ml*), E: MY*. 

In the second case we will assume that + (t) = (Y,z' (t), 2' (t)) =: (Y, (t). 2, (t) - %). The 

functions x*'(t) will be the solutions of systems x' = X&'(t,r), satisfying the initial con- 
ditions CC,,' (0) L- (Yn. 0). The following estimates follow from the inequality v'(t,r)< -w(E,Z): 

wq (t, 4 = w (Tn”-t t, Y, rl” -I- 4 
Continuing the further arguments as in the case of bounded ?J,, we conclude that there 

exists a non-continuable solution zr = ma(t) of some limiting system i = D,*(t,s), satisfying 
the initial condition qa (0) = (Y,*,O), and such, that 'Rae N,* (t, CO) n {OS* (t,s) = 0). This 
implies that (Y,*, 0)~ q+ (t)c M**, i.e. y,* E (IJM,), CI Ma'. The theorem is proved. 

Theorem 2. We shall assume that 1) there exists a y-positive-definite function V(t,x) 
with a derivative by virtue of (1.1) V'(t,x).< -bV(t, x)< 0; 2) every limiting pair (cp, 0) 
with the set N(t,c) has the following property: solutions of every system (1.3) belonging, 
respectively, to the sets {N,(t,c): c = con&) n {Wi (t,x)= 0) (i = 1,2), belong also to the set 
(z: y = 0). Then the zero solution of (1.1) is asymtotically y-stable. 

Its proof follows from Theorem 1. 
Let the function V= Vft,~) be bounded and satisfy the' Lipshitz condition in t and z 

in every region {t> 0, IIyII<HH,<H, IIz,ll 4 +-I. Then the function will have an infinitesimal 
upper limit in G, for any sequences 2,-+ +-00 and qn-+m there exist subsequences {Q.} c 

{rcn) and (~~1 c {%I, such, that the sequences of functions @'(t, s)= V(t -tr,,, 5) and 



199 

vi”,’ (t, 5) = v (t $- %kr y,z +rlnk)converge to some functions pr(t,z) and pZ (t,s)uniformly on every 

compact set [O, Tl x { II y II < H, < H, II z II < Q). 
Let us determine the limiting set (O,p, o)=(((D~,Q)~), (&,p,), (al, oa)) as a set in which 

the functions @rIpI and ~~,@~,p~ and o2 are limiting functions for the same sequences 

r,++m and qn+oo. 

Theorem 3. Let us assume that 1) there exists a bounded y-positive definite function 

V(t,.x), satisfying theLipshitzcondition in t and I with a derivative v'(t,z)< -W(t,x)<O: 

2) r for every limiting set (@, p,o) the sets {pi (t, z) = const > 0) n {oi (t, 5) = 0) (i = 1, 2) do 
not contain any solutions of the corresponding system (1.3). Then the zero solution of (1.1) 

is uniformly asymptotically y-stable. 
The proof follows that of Theorem 2.4 of /9/. First we show that every limiting set 

(@,p,w) has the following property: if (~(t,t,,z~) is a solution of the system m'=Q)(t,%), 

then p (t, cp (t, t,, I~))+ 0 as d--t i-m. Next, using reductio ad absurdum we show that the function 

v (t, 5 (t, t,, X0))+ 0 as t + +m uniformly in t, and x0 along the solutions of (1.1) bounded 

in y by the region {z:jlyjl< H,(H). 
Modifying the proofs of the above theorems we can obtain the following additional results. 

Theorem 4. We will assume that 1) there exists a y-positive-definite function v (t, X)! 
whose derivative v' (1,z)x< -W(t,s)<O; 2) there exists a sequence t,,+ +w, for which every 
limiting pair (@,a) with the set N(t,c) will be such, that the sets {Ni (t,~): c=const> 0) n 
{ol(t,x)=O) (i=i,2) will contain no solutions of the corresponding systems (1.3). Then 
the zero solution of the system (1.1) will be asymptotically y-stable uniformly in x0. 

Theorem 5. We will assume that a function V(t,s), exists which in any small neighbourhood 

of x=0 takes positive values, is bounded in the region V(~,XJ 20 and possesses a 

derivative v' (6 5) > w (t, x) > 0. Condition 2) of Theorem 4 also holds, Then the zero 

solution of system (1.1) will be unstable in y. 

The theorems obtained extend and generalize the results of /lo-14, 5, 6, 9,'. Unlike in 

/lo-12/, the condition of positive negativeness of the derivative in some of the variables 

is replaced by the condition of its constan 

demand of z-boundedness which appears in /9 

negativeness At the same time, there is no 
13, 14/, and unlike in 15, 6/, we take into 

account the z-properties of the system as z*oo. 

Examples. lo. Let US consider the autonomous system of equations 

y’ = - y CO9 2, 2’ = f, (y) sin* z (2.2) 

where k(u)#O when y#O. By virtue of (2.2) we have v'= -2y*cosar for any function V=$. 
The systems z-limiting with respect to (2.2) will have the form (2.2) when z is replaced by 
Z-j- Y(Y = const). The corresponding functions of o(y, I)= -2yacos2(~+ v), z-limiting with respect to 

Y'= -2yacos% , which are z-limiting with respect to v= y=, are identical with V. But the set 
(V= const>Oj n {o = O)= (yi:0,cos2(~+ $=O) contains no solutions of the z-limiting system. There- 

fore, according to Theorem 3 the zero solution of the system (2.2) is uniformly asymptotically 

stable in y. 

20. A problem of asymptotic stability with respect to some of the variables and coordinates 
of the zero position of equilibrium of a holonomic mechanical system with Lagrange's function 

L = L,(t,q,q')$ L, (q.g')+ L,(t,q), acted upon by gyroscopic and dissipative forces Q = Q 0, 4, 47, was 
discussed in /9/. Theorems 2-4 enable us to assert that Theorems 3.1 and 3.2 of /9/ remain 

valid, provided that the condition that the motions in q,,,+I,g~+r,....~n are bounded, is replaced 
by the condition that the right-hand sides of the equations of motion solved for . . 

4 are 
bounded and satisfy the Lipshitz conditions in t,q,q' in every region (a'%+ qn'Z+ . . :+ qn'2< H= 

const, ~~a+ qaa-t . . . -I- qma< H+ &+I + &+a i- + * . -I- d< + wk. 

3O. Let us consider the motion of a heavy material point along the surface z=f(=,y). We 

shall assume that the function f(x,y) is positive definite in Z. the function and its partial 
derivatives up to and including the second order are bounded and equicontinuous in the region 

(II z II < HI, II Y II < + c-1; a//ax = aflay = 0 when I = y = 0, so that the point has a position of equilibrium 
z'= y'=z= y=O. Let the point be also acted upon by dissipative forces QI and Q,,, bounded 

and equicontinuous in t,z’, y’, s, y. For the derivative of total energy E= T-j- gf(z, y), positive- 
definite in z', y', Z, we have H'= Qsz'+ QvY'. The equation in 5" will have the form 

(2.3) 

The equations which are t-,(f,y)-continuous with respect to (2.3) have the same form, but 
with the function f*(z,#) and values OX* and Qv', which are, respectively, limiting with 
respect to #,QX.Qu. We can find from the form of (2.3), that when Q=* = Q,,* =O, and Z. and I' 

are small, the solutions of the limiting equations satisfying the condition z'sO, must also 
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satisfy the relation af*/as= 0. This yields, according to Theorems 2 and 3, the following 
results. 

. 

If I afh I 2 h, (I 3 1) > 0, QG -k &a’ < - 6 (4 4 (1 2’ I), where f3 (t) >, 0, B (t) > Pa > 0 when t E [h, t,, 3- 
VI (tn - + 00, f,,+l - tn < r = const, Y > 0) h (a) = 0 _ a = 0, then the zero position of equilibrium of the 
point stable in z',y' and sis asymptotically stable in I' and z. 

If for any small E>O we have the inequality I3f/ax[g~>O when f (2, y) > 6 = 6 (E) > 0, and 
also &s'+ &Y'< B(t)h(Is'l+ j~'I),then the zero position of equilibrium of the point is uniformly 
asymptotically stable in s',y',s. 

3. Let us consider the motion of a mechanical system with generalized coordinates 

419 929 . ‘7 Pm, power-dependent on the linear, non-holonomic stationary constraints, and acted 
upon by potential, gyroscopic and dissipative forces depending explicitly on time. we take, 
as the equations of motion, the equations in the Voronets form /15/ 

CL’ = B (9) q,’ 

&is) -~(O--I)--(e--)B~Q1+Glq~ 

q = (ql, qdr q1 E R’, q2 E HP (s + p = m) 

(3.1) 

where B=B(p) is the matrix of the coefficients of the non-holonomic constraints, 20 zz: 

(qI')r-4 (Q) 91' is the reduced kinetic energy of the system with the constraints accounted for 

(A is an s X s matrix), n=n(t,p) is the potential energy, Q1= Q1(t, q,ql’) is the 

resultant of the generalized gyroscopic and dissipative forces, GIqI’ are the non-holonomic, 

gyroscopic-type terms. 

Let us assume that Waq=O when q=O. Then system (3.1) will have a zero position 

of equilibrium 
q’=q=O (3.2) 

The problem of the asymptotic stability of the position of equilibrium (3.2) of system 

(3.1) in 4' and q1 was solved in /13, 16, 17,' under the assumption that the generalized forces 

do not depend explicitlyontime, the solutions of system (3.1) belonging to some neighbourhood 

of (3.2) are bounded in q2, and the points of the set {ql=O,q,= const} representthepositions 

of equilibrium of (3.1). The problem was solved in /6/ under the assumption that n = n (a) 
and the influences of the time t and coordinates q2 disappear as t -+f 00 and 92-w. 
Theorem 2 enables us to solve the problem under more general assumptions. 

Let us assume that lI(t,O)~O,dn/at,<O. Then we have the following expression for the 

derivative of H=8 $- n: 

H.=-$ + QITqi<QITql' 

Eqs.(3.1) solved for ql”, will be: 

qz’ = Bq,’ 
qi'=((qi)TCqiI -A-l(-$ + SB + QI +Gqi) 

(3.3) 

where {(Q1’)T%‘) is a set of forms quadratic in .q,' . Let us assume that the quantities 

IJ 0, q), B (q), {C (q)}, A C?), afl/&, 91 0, 4, h-h 6 (6 q, q;) are bounded satisfy the Lipshitz con- 

ditions over all their variables in the region {iI qr'11 < HI, 11 91 II < HI, 11 Psll C i- m). Then the 

equations which are limiting with respect to (3.3) have the same form 

q2’ = B*q,’ 

qi*= {(qi)TC*qil-(~*)-l((~ -I- 2 B)* + QI* +G~*qij 

(3.4) 

where the asterisk denotes an expression which is limiting with respect to the corresponding 

expression for (3.3). For example, 

B* (4) = B (q), Q1* (6 q, ql') =&_Ql (4, + 6 9, 91'); 

B* (9) = lim B (ql, d") + qA, Q1* (6 q, ql') = n-+m 

lim Q1 U,, + t, ql, d") + qa, ql') (t, * + 00, pa(") * m) 

The form of system (3.4) implies that its solutions lying on the set {qr'=o} must 

satisfy the relations 

qa’ z 0, (+$B)*=O 
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Therefore, when the condition 

(3.5) 

holds, system (3.4) contains, on the set {(pi'=O}, only the solutions qr(t) ~0. Condition 

(3.5) implies that there are no positions of equilibrium outside the set 071 = 81, and that 

this property is preserved as t,+ + 00 and qp + 00. 
According to Theorem 2, we have the followinq result. 

Let us assume that 1) the function n= n(t,q) is positive-definite in ql; 2) condition 

(3.5) holds; 3) the dissipative forces are such that W!71'< -B (t) h (II !71' II)? B (t) > 0, B (0 > 
fi0>0 for tE[t,,t,+vl (a+++, &w--&Qr, v>U). Then the position of equilibrium of 

(3.2) is asymptotically stable with respect to q', 91. 

The author thanks V.V. Rumyantsev for his interest and for assessing the results. 

REFERENCES 

1. CODDINGTON E.A. and LEVINSON N., Theory of Ordinary Differential Equations. N.Y., McCraw- 

Hill, 1955. 

2. OZIRANER A.S. and RUMYANTSEV V.V., The method of Lyapunov functions in the problem of 

stability of motion with respect to some of the variables. PMM, 36, 2, 1972. 

3. SELL G.R., Non-autonomous differential equations and topological dynamcis. Trans. Amer. 

Math. Sot., 127, 2, 1967. 

4. ARSTEIN Z., Topological dynamics of a ordinary differential equations. J. Different. Equat. 

23, 2, 1977. 

5. HATVANI L., On partial asymptotic stability and instability. II (The method of limiting 

equation). Acta Sci. Math.(Szeged), 46, 1-4, 1983. 

6. HATVANI L., On partial asymptotic stability by the method of limiting equation. Ann. Math. 

pura ed appl., 4, 139, 1985. 

7. HATVANI L., A generalization of the Barbashin - Krasovskii theorems to the partial stability 
in non-autonomous systems. Coil. Math. Sot. Janos Bolyai 30, Qualitative Theory of 

Different. Equations. Szeged (hungary), 1979. 

8. ANDREYEV A.S., On the asymptotic stability and instability of the zero solution of a non- 

autonomous system. PMM, 48, 2, 1984. 

9. ANDREYEV A.S., On the asymptotic stability and instability of the zero solution of a non- 

10. 

11. 

12. 

13. 

14. 

15. 

16. 
17. 

autonomous system with respect to some of the variables. PMM, 48, 5, 1984. 

RUMYANTSEV V.V., On the stability of motion with respect to some of the variables. Vestn. 

MGU, Matematika, mekhanika, astronomiya, fizika, khimiya, 4, 1957. 

CORDUNEANU C., Sur la stabilit& partielle. Rev. Roum. Math. pures et appl., 9, 3, 1964. 

PEIFFER K. and ROUCHE N., Liapunov's second method applied to partial stability, J. met., 
8, 2, 1968. 

RUMYANTSEV V.V., On the asymptotic stability and instability of motion with respect to 

some of the variables. PMM, 35, 1, 1971. 

OZIRANER A.S., On the asymptotic stability and instability with respect to some of the 

variables. PEW, 37, 4, 1973. 

NEIMARK YU.1. and FUFAYEV N.A., Dynamics of Non-Holonomic Systems. Moscow, Nauka, 1967. 
RUMYANT,SEV V.V., On the s,tability of motion of non-holonomic systems. PMM, 31, 3, 1967. 
RISITO C., Sulla stabilita asintotica parziale. Ann. Math. pura ed appl. 4, 84, 1970. 

Translated by L.K. 


